IMRT 2 : DEVOIR 1 : 0708

DONNÉES:

masse du proton $m_P = 1,67 \times 10^{-27} \text{ kg}$

célérité de la lumière $c = 3.00 \times 10^8 \text{ m.s}^{-1}$ masse de l'électron $9.1 \times 10^{-31} \text{ kg}$

constante de Planck $h = 6.62 \times 10^{-34}$ J.s charge élémentaire $e = 1.60 \times 10^{-19}$ C

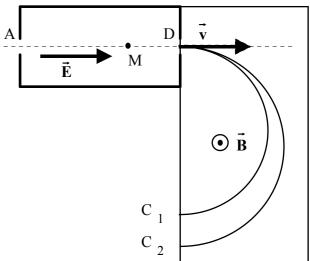
PREMIÈRE PARTIE: CONTRÔLE DES CONNAISSANCES. (30 points)

Q1: Questions à choix multiples (16 points)

Chaque question possède au moins une réponse vraie. Pour chacune des questions, répondre par vrai (V) ou faux (F) en remplissant le document réponse.

- 1. Une particule chargée est placée dans un champ électrique constant perpendiculaire à sa vitesse initiale
 - a) elle prend une trajectoire circulaire.
 - b) elle prend une trajectoire rectiligne.
 - c) elle prend une trajectoire parabolique.
 - d) elle accélère.
- 2. Soit un condensateur plan dont les plaques sont distantes de 3,0 cm dans le vide. La tension appliquée entre les plaques est U = 1.5 kV. La valeur E du champ électrique entre les plaques est :
 - a) 1.5 kV.m⁻¹
 - b) 4.5 kV.cm⁻¹
 - c) 50 kV.m⁻¹
 - d) 500 V.cm⁻¹
- 3. L'accélération d'un électron de charge -e, soumis à un champ électrique E constant a pour norme :
 - a) a = mE / e
 - b) a = mE / e
 - c) a = eE / m
 - d) a = em / E
- 4. La force de Lorentz
 - a) Est toujours perpendiculaire à la vitesse de la particule
 - b) Ne s'exerce que sur une particule chargée en mouvement
 - c) Résulte de l'action d'un champ électrique sur une particule chargée
 - d) Peut s'exercer sur un neutron si la vitesse de celui-ci est proche de celle de la lumière
- 5. Une particule chargée, de vitesse initiale \vec{v}_0 pénètre une zone dans laquelle règne un champ magnétique.
 - a) Sa trajectoire est une droite si sa vitesse initiale \vec{v}_0 est parallèle au champ magnétique
 - b) Sa trajectoire peut être une spirale.
 - c) Sa trajectoire est un arc de parabole.
 - d) Sa trajectoire est toujours circulaire.
- 6. Un champ magnétique uniforme perpendiculaire à la vitesse d'une particule chargée :
 - a) maintient la particule dans un même plan.
 - b) maintient la particule sur une trajectoire circulaire.
 - c) communique une énergie cinétique importante à la particule.
 - d) freine la particule.
- 7. Entre les dees d'un cyclotron, la tension électrique appliquée :
 - a) conserve la même valeur et le même signe.
 - b) change de signe et conserve la même valeur.
 - c) change de valeur et de signe.
 - d) est alternative.

- 8. La durée du parcours d'une particule chargée dans un dee d'un cyclotron :
 - a) dépend de la vitesse d'entrée de la particule dans le dee.
 - b) ne dépend pas de la charge de la particule.
 - c) dépend de la valeur du champ magnétique.
 - d) dépend de la masse de la particule.

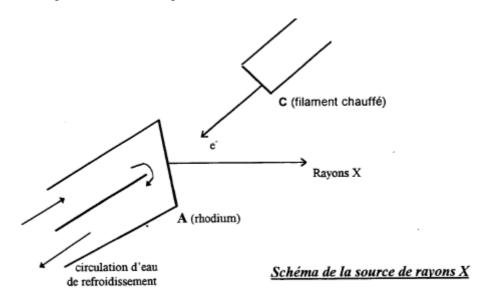

	1	2	3	4	5	6	7	8
A								
В								
C								
D								

Q2 : Spectrographe de masse (14 points).

- 1. Un proton, de masse m et de charge q, placé dans un champ électrique uniforme \vec{E} est soumis à une force électrique. Le champ électrique est obtenu en maintenant entre deux plaques conductrices parallèles et distantes de d = 10 cm une différence de potentiel U = 5,0 kV. Les plaques sont dans le vide et percées l'une en A et l'autre en D pour permettre le passage des particules (voir figure jointe). Le proton est initialement au repos en A.
- 1.1. Donner les caractéristiques de la force électrique \vec{F} à laquelle le proton est soumis. Comparer sa valeur au poids du proton (on donne $g = 9.81 \text{ m.s}^{-2}$).
- 1.2. Donner les caractéristiques de l'accélération du proton entre les deux plaques.
- 1.3. Donner les caractéristiques du mouvement et de la trajectoire du proton entre A et D.
- 1.4. Calculer l'énergie cinétique puis la valeur de la vitesse \vec{v} du proton en D.
- 2. En D l'action du champ \vec{E} cesse et le proton pénètre dans un champ magnétique uniforme \vec{B} de valeur B = 0.08 T, de direction perpendiculaire à \vec{v} .
- 2.1. Donner l'expression du rayon r de la circonférence de la trajectoire; parmi les valeurs proposées ci-après, choisir la valeur de r en justifiant la réponse.

1,27 m; 2,51 cm; 0,127 m; 0,833 m; 1,27 cm; 8.33 cm; 17.3 cm; 2.71 cm; 25.1 m; 1.27 mm;

- 2.2. Comment évolue l'énergie cinétique du proton au cours de son mouvement dans le champ B ? Justifier.
- 3. Une seconde particule, de masse M inconnue, de même charge q, également au repos en A, subit d'abord l'action de \vec{E} , puis celle de \vec{B} dans les mêmes conditions. Le rayon de sa trajectoire vaut R.


- 3.1. Démontrer que m / $M = r^2 / R^2$.
- 3.2. On mesure $DC_2 = 36.2$ cm. Calculer la valeur de la masse M ; identifier la particule.

SECONDE PARTIE : PROBLEMES (30 points)

I. Tube à rayons X ; fluorescence X

1. Étude de la source primaire de rayons X

- 1. Des électrons émis par une cathode C sont accélérés sous une tension U_{AC} . Ils bombardent une anticathode A de rhodium, ce qui conduit à l'émission de rayons X.
- 1.1. Donner le signe de la tension U_{AC}. Justifier.
- 1.2. En admettant que la vitesse d'émission des électrons par la cathode C est nulle, exprimer leur énergie cinétique, lorsqu'ils atteignent l'anticathode, en fonction de U_{AC} .
- 1.3. Établir la relation reliant la longueur d'onde minimale λ_{min} des rayons émis et la tension U_{AC} .
- 1.4. Application numérique : calculer U_{AC} pour $\lambda_{min} = 1.40 \times 10^{-10}$ m.

- 1.5. Calculer l'énergie des photons les plus nombreux émis par le tube (on rappelle que leur énergie vaut les deux tiers de l'énergie maximale des photons émis par le tube) ; le résultat doit être exprimé en joule et en électronvolt.
- 1.6. Dessiner l'allure du spectre d'émission d'un tube à rayons X ; on portera en abscisse l'énergie des photons émis.

2. Étude d'un échantillon par fluorescence X

Les rayons X produits par la source primaire sont envoyés sur un échantillon métallique. Ils peuvent être absorbés par les atomes présents. Dans ce cas, un électron de la couche K peut être expulsé de l'atome. L'atome ionisé émet alors, au cours de sa désexcitation, des raies de fluorescence X.

- 2.1. Établir la condition reliant l'énergie E_K du niveau K d'un atome et la longueur d'onde incidente minimum ($\lambda_{mini} = 1,40 \times 10^{-10}$ m) pour que le phénomène de fluorescence X soit possible.
- 2.2. Parmi les éléments du tableau suivant, quels sont ceux qui pourront donner lieu à un rayonnement de fluorescence X par départ d'un électron K, avec la source utilisée ($\lambda_{mini} = 1,40 \times 10^{-10}$ m)?

Élément	Fe	Cu	Zn
Énergie du niveau K en keV	-7,14	-8,28	-9,70

2.3. L'échantillon émet un rayonnement de longueur d'onde $\lambda_{K\alpha}$ = 1,66 × 10⁻¹⁰ m correspondant à la transition du niveau L au niveau K du nickel.

L'énergie du niveau L du nickel est $E_L = -853 \text{ eV}$; calculer l'énergie E_K du niveau K.

II. Étude d'un radio nucléide : l'iode 123.

L'iode 123, de numéro atomique Z = 53, est utilisé sous forme d'iodure de sodium (en injection) pour la scintigraphie ; c'est un émetteur de rayons γ purs.

1. Production de l'iode 123.

Par irradiation d'une cible gazeuse de xénon $^{124}_{54}$ Xe par un faisceau de protons, on obtient du césium $^{123}_{55}$ Cs

- 1.1. Donner l'équation de cette transmutation ; quelles particules obtient-on également au cours de cette réaction nucléaire ?
- 1.2. Le césium 123 est émetteur β^+ et donne du xénon 123 par désintégration ; donner l'équation de la réaction ; préciser le numéro atomique du Xénon.

Cette réaction (comme beaucoup d'émissions β^+) est accompagnée d'une réaction de capture électronique ; expliquer brièvement ce qu'est une capture électronique et donner l'équation de celle-ci.

1.3. Le xénon 123 est également radioactif et permet d'obtenir l'iode $^{123}_{53}I$; donner les noms des deux réactions possibles (et différentes) permettant cette transformation.

2. Radioactivité de l'iode 123.

- 2.1. Par un processus de capture électronique, l'iode 123 donne du tellure Te. Donner l'équation de la réaction ; préciser le numéro atomique et le nombre de masse du tellure.
- 2.2. La désintégration de l'iode 123 est accompagnée principalement par l'émission de deux types de photons :

photons γ d'énergie 159 keV photons X d'énergie 27 keV.

- 2.2.1. Décrire le processus conduisant à la formation du photon γ .
- 2.2.2. Les énergies des niveaux électroniques internes du tellure sont, exprimés en électronvolt :

niveau	K	L-I	L-II	L-III	M-I	M-II	M-III	M-IV	M-V
nom	1s	2s	2p1/2	2p3/2	3s	3p1/2	3p3/2	3d3/2	3d5/2
énergie (keV)	-31,814	-4,939	-4,612	-4,341	-1,006	-0,871	-0,820.0	-0,583	-0,573

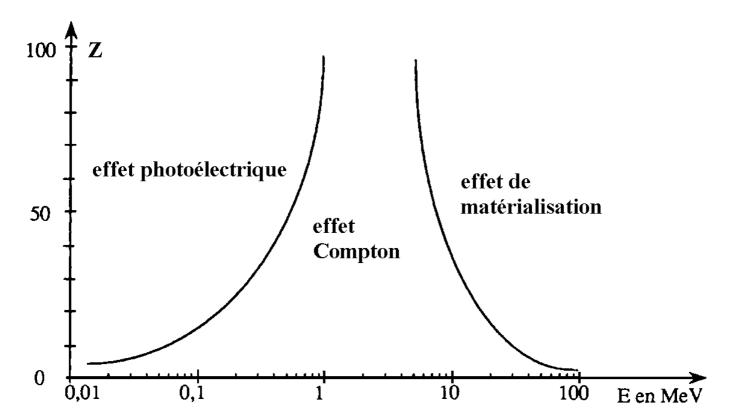
Construire un diagramme énergétique qualitatif des niveaux d'énergies internes du tellure.

Montrer que le photon X émis correspond à la raie K_{α} de cet atome.

2.3. La demi vie de l'iode 123 vaut13,2 h.

Une ampoule contenant une solution d'iodure de sodium à une activité de 7×10^7 Bq à 8 h du matin ; calculer son activité à 14 h.

Déterminer l'activité de l'échantillon le lendemain à 10 h 30.


3. Pénétration des photons y et X dans la matière.

Les photons émis (159 keV et 27 keV) se propagent dans les tissus que l'on considérera en première approximation comme constitués d'eau de "numéro atomique" moyen égal à 8, et dont on rappelle que la masse volumique vaut 1,0 g.cm⁻³.

3.1. A l'aide du diagramme fourni ci-après, déterminer le type d'interaction que chaque sorte de photon présente avec les tissus traversés.

Donner une description sommaire des deux types d'interactions cités.

- 3.2. Le coefficient massique d'atténuation dans l'eau, pour des photons d'énergie 159 keV, vaut 0,15 cm².g⁻¹, alors que pour des photons d'énergie 27 keV, il vaut 0,45 cm².g⁻¹.
- 3.2.1. Calculer le coefficient d'atténuation linéique dans l'eau pour chaque type de photon.
- 3.2.2. Calculer la couche de demi atténuation dans l'eau pour chaque type de photon.
- 3.2.3. Comment évolue le rapport du nombre de photons γ au nombre de photons X contenus dans le faisceau au cours de la traversée des tissus ? Justifier la réponse.

