IMRT2: DEVOIR 1: 0607

DONNÉES:

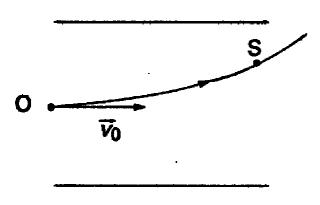
 $\begin{array}{ll} \text{charge \'el\'ementaire} & \text{masse de l\'electron} & \text{c\'el\'erit\'e de la lumi\`ere} & \text{constante de Planck} \\ \text{e} = 1,60 \times 10^{\text{-}19} \text{ C}, & \text{m} = 9,11 \times 10^{\text{-}31} \text{ kg} & \text{c} = 3,00 \times 10^8 \text{ m.s}^{\text{-}1} & \text{h} = 6,63 \times 10^{\text{-}34} \text{ J.s} \\ \end{array}$

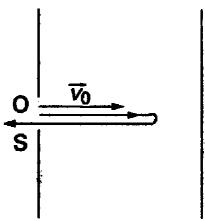
PREMIÈRE PARTIE

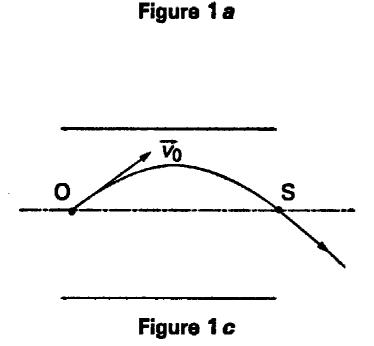
I. Questionnaire à choix multiples.

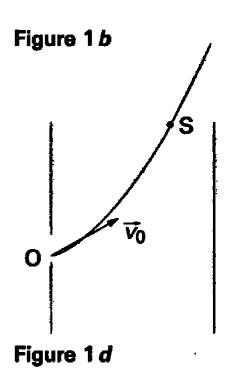
- 1. Un champ électrique est généralement émis par
 - A. une masse
 - B. une charge
 - C. deux plaques parallèles chargées
 - D. un aimant
 - E. une masse en mouvement
- 2. L'accélération d'un électron de charge (-e) soumis à un champ électrique E est de la forme
 - A. a = m.E/e
 - B. a = -e.E/m
 - C. a = -m.E/e
 - D. a = m.e /E
 - E. a = E
- 3. L'accélération d'un électron de charge (-e) soumis à un champ électrique E créé par deux plaques parallèles est
 - A. parallèle aux plaques
 - B. perpendiculaire aux plaques
 - C. de direction dépendant de la charge des plaques
 - D. constante
 - E uniformément variée
- 4. Dans un canon à protons, la variation d'énergie cinétique entre la cathode C et l'anode A est de la forme :
 - A. $\Delta Ec = e U_{AC}$
 - B. $\Delta Ec = U_{AC} / e$
 - C. $\Delta Ec = e / U_{AC}$
 - D. $\Delta Ec = m e / U_{AC}$
 - E. $\Delta Ec = m U_{AC} / E$
- 5. Des particules chargées, de masse m, accélérées par une tension Ua, sont déviées par une tension Ud crée par deux plaques parallèles

La déflexion électrique D est

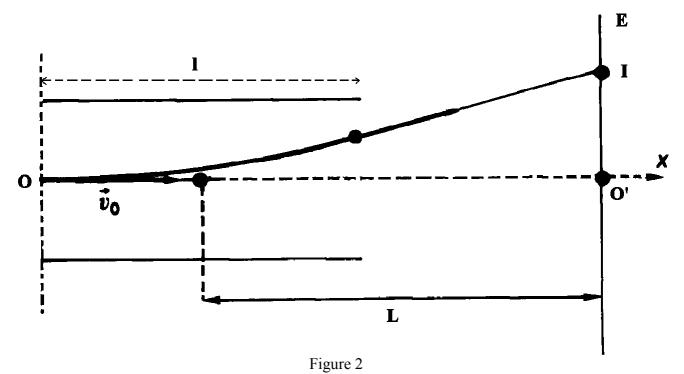

- A. Proportionnelle à la tension Ud
- B. Inversement proportionnelle à la tension accélératrice Ua
- C. Proportionnelle à la longueur des plaques déviatrices
- D. Proportionnelle à la masse des particules
- E. Proportionnelle à la distance entre les plaques.


- 6. Soit un condensateur plan dont les plaques P et P' sont distantes de 2 cm et de longueur 0,10 m. La différence de potentiel vaut $U_{PP'}$ = 1,0 kV. La valeur du champ électrique régnant entre ces plaques est de l'ordre de :
 - A. 500 V.cm⁻¹
 - B. 50 kV.m^{-1}
 - C. 0,02 V.m⁻¹
 - D. 50 V.m⁻¹
 - E. 200 V.m⁻¹


II. Trajectoire d'une particule dans un champ électrique.


Un faisceau d'électrons aborde une région de l'espace dans laquelle règne un champ électrostatique supposé uniforme, crée par deux plaques parallèles reliées aux bornes d'un générateur.

1. Dans les quatre cas suivants, préciser la direction et le sens du champ électrique régnant entre les plaques.


IMRT: JFC

- 2. Dans quel(s) cas peut-on affirmer que l'énergie de la particule est la même en S et en O? Justifier la réponse.
- 3. Dans le cas de la figure 1a, les électrons sont reçus en I sur un écran perpendiculaire à la direction OO'. La distance entre le point O' et le milieu des plaques vaut L = 50 cm (voir figure 2) On donne:

La valeur du champ électrique $E = 100 \text{ V.m}^{-1}$

La longueur des plaques 1 = 5,0 cm

La vitesse initiale des électrons en O $v_0 = 2.0 \times 10^6 \text{m.s}^{-1}$

3.1. Parmi les propositions suivantes, donnant l'expression de la déviation Y = O'I, une seule est exacte ; citer laquelle en justifiant la réponse par une analyse dimensionnelle des formules proposées.

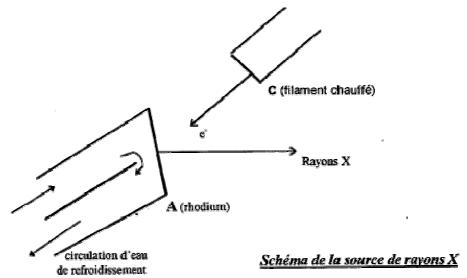
$$Y = \frac{e E L}{v_0^2}$$

$$Y = \frac{e E 1}{m v_0^2}$$

$$Y = \frac{e E L 1}{m v_0^2}$$

$$Y = \frac{e E l}{m v_0}$$

$$Y = \frac{e E L l}{v_0^2} \qquad Y = \frac{e E l}{m v_0^2} \qquad Y = \frac{e E L l}{m v_0^2} \qquad Y = \frac{e E L l}{m v_0}$$


3.2. Calculer la déviation O'I

SECONDE PARTIE: PROBLEMES

I. Tube à rayons X ; fluorescence X

1. Étude de la source primaire de rayons X

- 1. Des électrons émis par une cathode C sont accélérés sous une tension U_{AC} . Ils bombardent une anticathode A de rhodium, ce qui conduit à l'émission de rayons X.
- 1.1. Donner le signe de la tension U_{AC}. Justifier.
- 1.2. En admettant que la vitesse d'émission des électrons par la cathode C est nulle, exprimer leur énergie cinétique, lorsqu'ils atteignent l'anticathode, en fonction de U_{AC}.
- 1.3. Établir la relation reliant la longueur d'onde minimale λ_{min} des rayons émis et la tension U_{AC} .
- 1.4. Application numérique : calculer U_{AC} pour $\lambda_{min} = 1,40 \times 10^{-10}$ m.

- 1.5. Calculer l'énergie des photons les plus nombreux émis par le tube (on rappelle que leur énergie vaut les deux tiers de l'énergie maximale des photons émis par le tube) ; le résultat doit être exprimé en joule et en électronvolt.
- 1.6. Dessiner l'allure du spectre d'émission d'un tube à rayons X ; on portera en abscisse l'énergie des photons émis.

2. Étude d'un échantillon par fluorescence X

Les rayons X produits par la source primaire sont envoyés sur un échantillon métallique. Ils peuvent être absorbés par les atomes présents. Dans ce cas, un électron de la couche K peut être expulsé de l'atome. L'atome ionisé émet alors, au cours de sa désexcitation, des raies de fluorescence X.

- 2.1. Donner la condition reliant l'énergie E_K du niveau K d'un atome et la longueur d'onde incidente minimum ($\lambda_{mini} = 1,40 \times 10^{-10}$ m) pour que le phénomène de fluorescence X soit possible.
- 2.2. Parmi les éléments du tableau suivant, quels sont ceux qui pourront donner lieu à un rayonnement de fluorescence X par départ d'un électron K, avec la source utilisée ($\lambda_{mini} = 1,40 \times 10^{-10}$ m)?

Élément	Fe	Cu	Zn
Énergie du niveau K en keV	-7,14	-8,28	-9,70

2.3. L'échantillon émet un rayonnement de longueur d'onde $\lambda_{K\alpha} = 1,66 \times 10^{-10}$ m correspondant à la transition du niveau L au niveau K du nickel.

L'énergie du niveau L du nickel est $E_L = -853$ eV ; calculer l'énergie E_K du niveau K.

II. Étude d'un radio nucléide : l'iode 123.

L'iode 123, de numéro atomique Z = 53, est utilisé sous forme d'iodure de sodium (en injection) pour la scintigraphie ; c'est un émetteur de rayons γ purs.

1. Production de l'iode 123.

Par irradiation d'une cible gazeuse de xénon $^{124}_{54}$ Xe par un faisceau de protons, on obtient du césium $^{123}_{55}$ Cs

- 1.1. Donner l'équation de cette transmutation ; quelles particules obtient-on également au cours de cette réaction nucléaire ?
- 1.2. Le césium 123 est émetteur β^+ et donne du xénon 123 par désintégration ; donner l'équation de la réaction ; préciser le numéro atomique du Xénon.

Cette réaction (comme beaucoup d'émissions β^+) est accompagnée d'une réaction de capture électronique; expliquer brièvement ce qu'est une capture électronique et donner l'équation de celle-ci.

1.3. Le xénon 123 est également radioactif et permet d'obtenir l'iode $^{123}_{53}I$; donner les noms des deux réactions possibles (et différentes) permettant cette transformation.

2. Radioactivité de l'iode 123.

- 2.1. Par un processus de capture électronique, l'iode 123 donne du tellure Te. Donner l'équation de la réaction ; préciser le numéro atomique et le nombre de masse du tellure.
- 2.2. La désintégration de l'iode 123 est accompagnée principalement par l'émission de deux types de photons :

photons γ d'énergie 159 keV photons X d'énergie 27 keV.

- 2.2.1. Décrire le processus conduisant à la formation du photon γ .
- 2.2.2. Les énergies des niveaux électroniques internes du tellure sont, exprimés en électronvolt :

niveau	K	L-I	L-II	L-III	M-I	M-II	M-III	M-IV	M-V
nom	1s	2s	2p1/2	2p3/2	3s	3p1/2	3p3/2	3d3/2	3d5/2
énergie (keV)	-31,814	-4,939	-4,612	-4,341	-1,006	-0,871	-0,820.0	-0,583	-0,573

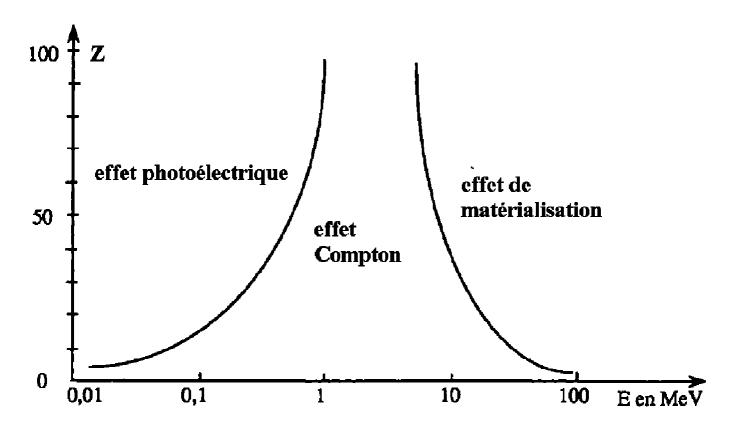
Construire un diagramme énergétique qualitatif des niveaux d'énergies internes du tellure.

Montrer que le photon X émis correspond à la raie K_{α} de cet atome.

2.3. La demi vie de l'iode 123 vaut13,2 h.

Une ampoule contenant une solution d'iodure de sodium à une activité de $7 \cdot 10^7$ Bq à 8 h du matin ; calculer son activité à 14 h.

Déterminer l'activité de l'échantillon le lendemain à 10 h 30.


3. Pénétration des photons y et X dans la matière.

Les photons émis (159 keV et 27 keV) se propagent dans les tissus que l'on considérera en première approximation comme constitués d'eau de "numéro atomique" moyen égal à 8, et dont on rappelle que la masse volumique vaut 1,0 g.cm⁻³.

3.1. A l'aide du diagramme fourni ci-après, déterminer le type d'interaction que chaque sorte de photon présente avec les tissus traversés.

Donner une description sommaire des deux types d'interactions cités.

- 3.2. Le coefficient massique d'atténuation dans l'eau, pour des photons d'énergie 159 keV, vaut 0,15 cm².g⁻¹, alors que pour des photons d'énergie 27 keV, il vaut 0,45 cm².g⁻¹.
- 3.2.1. Calculer le coefficient d'atténuation linéique dans l'eau pour chaque type de photon.
- 3.2.2. Calculer la couche de demi atténuation dans l'eau pour chaque type de photon.
- 3.2.3. Comment évolue le rapport du nombre de photons γ au nombre de photons X contenus dans le faisceau au cours de la traversée des tissus ? Justifier la réponse.

	1	2	3	4	5	6
A						
В						
C						
D						
E						