IMRT1: DEVOIR 6: 1112

charge élémentaire célérité de la lumière dans le vide constante de Planck unité de masse atomique masse de l'électron masse du proton masse du neutron $e = 1,602 \times 10^{-19} \text{ C}$ $c = 3,00 \times 10^8 \text{ m.s}^{-1}$ $h = 6,626 \times 10^{-34} \text{ J.s}$ $1 u = 1,66054 \times 10^{-27} \text{ kg} = 931,5 \text{ MeV.c}^{-2}$ $m_e = 9,109 \times 10^{-31} \text{ kg} = 4,48 \times 10^{-4} \text{ u}$ $m_P = 1,007 \text{ 82 } u = 1,673 \times 10^{-27} \text{ kg}$ $m_n = 1,008 \text{ 66 } u = 1,674 \times 10^{-27} \text{ kg}$

QCM. Compléter le tableau joint par V (pour vrai) ou F (pour faux).

- 1) L'iode 130 (Z = 53), radioactif, se transforme en xénon 130 (Z = 54) stable
 - a) l'iode 130 est un émetteur 'beta -'
 - b) l'iode 130 est un émetteur 'beta +'
 - c) l'iode 130 est un émetteur 'alpha'
 - d) il s'agit d'une capture électronique
 - e) cette désintégration s'accompagne de l'émission d'un antineutrino
- 2) Le plutonium 238 (Z = 94), radioactif, se transforme en uranium 234 (Z = 92).
 - a) le plutonium est un émetteur 'alpha'
 - b) le plutonium est un émetteur 'béta -'
 - e) le plutonium est un émetteur 'béta+'
 - d) cette désintégration s'accompagne de l'émission d'un neutrino
 - e) cette désintégration peut s'accompagner de l'émission de photons 'gamma'
- 3) Le molybdène 93 (Z = 42), radioactif se désintègre par capture électronique (100%) en niobium stable
 - a) le numéro atomique du nobium vaut Z = 40
 - b) le nombre neutrons du noyau du nobium obtenu vaut N = 52
 - d) la désintégration s'accompagne de l'émission d'antineutrinos
 - d) la désintégration s'accompagne de l'émission de photons X
 - e) la désintégration peut s'accompagner de l'émission d'électrons Auger
- 4) Au cours d'une désintégration 'alpha'
 - a) la masse du noyau père est égale à la masse du noyau fils
 - b) la masse du noyau père est égale à la somme de la masse du noyau fils et de la particule 'alpha'
 - c)la masse du noyau père est supérieure à la somme de la masse du noyau fils et de la particule 'alpha'
 - d) la masse du noyau père est strictement supérieure à la masse du noyau fils augmentée de la somme des masses de deux protons et de deux neutrons
 - e) l'énergie cinétique de la particule alpha est légèrement inférieure à la différence de l'énergie de masse du noyau père et de l'énergie de masse du noyau fils
- 5) La demi-vie ou période radioactive de l'iode 131 vaut 8,04 jours.
 - a) sa constante radioactive vaut 0,124 jour⁻¹
 - b) sa constante radioactive vaut $6.0 \times 10^{-5} \text{ s}^{-1}$
 - c) la totalité de l'iode 131 aura disparu après 16,08 jours
 - d) après 24,1 jours l'activité de la source est divisée par 8
 - e) sa constante radioactive vaut 2.4×10^{-5} s⁻¹

- 6) Le technétium 99Tc a une demi-vie (période radiocative) de 6 heures. Une fiole de technétium a une activité de 40 Mbq à 18 heures.
 - a) son activité à midi valait 80 MBq
 - b) son activité à midi valait 60 MBq
 - c) son activité le lendemain à 18h vaut 2,5 MBq
 - d) son activité le lendemain à midi vaut 2,5 MBq
 - e) il faut attendre au moins deux jours et demi pour que son activité soit divisée par 1000
- 7) L'énergie moyenne de liaison par nucléon de la particule α est 7,07 MeV/nucléon.

La masse de la particule α vaut :

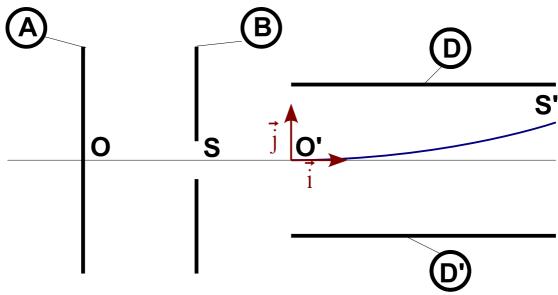
a)	4.	00	2	6	u
υ,					

b) 4,063 31 u

c) 4,032 96 u

d) 4,0340 6 u

e) 3728 MeV.c⁻²


	1	2	3	4	5	6	7
a							
b							
c							
d							
e							

imrt15 0910.odt Page 2 sur 6 IMRT : JFC

Q2: Trajectoires et mouvements dans un champ électrique.

Un proton H^+ pénètre en O entre deux électrodes A et B, planes et parallèles (voir schéma), soumises à une tension $U_{AB} = 10,0 \text{ kV}$, séparées d'une distance d = 10 cm. Sa vitesse initiale peut être considérée comme nulle.

On négligera le poids du proton devant les forces électriques

- 1.1. Donner la relation entre la valeur E du champ, la tension U_{AB} , et la distance d. Préciser les caractéristiques du champ électrique \vec{E} régnant entre les deux plaques.
- 1.2. Donner, qualitativement (sans démonstration), les caractéristiques du mouvement et de la trajectoire du proton entre les deux plaques.
- 1.3. En appliquant le théorème de l'énergie cinétique, calculer la vitesse v_s du proton à la sortie du dispositif, en S.

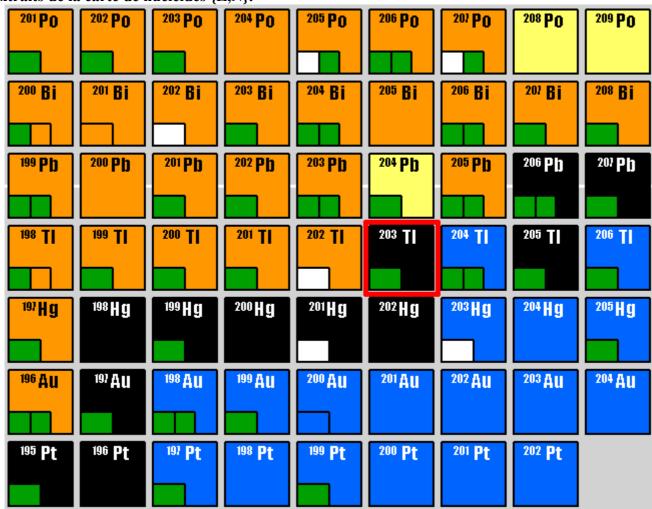
Le proton est ensuite soumis à un champ déviateur créé par deux plaques parallèles, perpendiculaires aux précédentes, distantes de d' = 15,0 cm, de longueur l = 20,0 cm et entre lesquelles règne un champ électrique E = 70 kV.m⁻¹ (voir schéma).

On supposera que la vitesse du proton en O' vaut $v_{0'} = 1.38 \times 10^6 \text{ m.s}^{-1}$

Tous les calculs littéraux se font en fonction de :

- e charge élémentaire
- m masse du proton
- E champ électrique,
- d distance entre les plaques
- l longueur des plaques
- $v_{O'}$ vitesse initiale du proton en O'
- 2.1. Préciser la direction et le sens du champ ainsi que le signe de la différence de potentiel $U_{DD'}$ pour que le proton soit dévié vers le haut.
- 2.2. Établir les équations horaires du mouvement du proton dans le repère $\{O', \vec{i}, \vec{j}\}$
- 2.3. Établir l'équation de la trajectoire du proton.
- 2.4. Donner les expressions littérales des cordonnées du point S puis les calculer.
- 2.5. Calculer la durée de passage du proton entre les deux plaques D et D'.
- 2.6. Calculer la vitesse du proton en S.

PROBLÈME: le thallium 201 201 81 TI


Le thallium 201 $\frac{201}{81}$ Tl est utilisé comme traceur de perfusion et de viabilité du muscle. Son mécanisme de fixation repose sur sa ressemblance chimique avec le potassium.

Données:

Le thallium 201 se désintègre en mercure 201 par capture électronique ; sa période (demi-vie) vaut T = 73 heures.

masse atomique de Tl 201 : 200,970819 u masse atomique de Hg 201 : 200,970302 u

Extraits de la carte de nucléides {Z,N}.

Extraits de la classification périodique

`-	0	y pe	1001900	11 10	14 110	ACOMINION	SILICIUM	FINGEHUNG	JUUINE
	26 55.845	27 58.933	28 58.693	29 63.546	30 65.39	31 69.723	32 72.64	33 74.922	34 78.96
	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se
Ē	FER	COBALT	NICKEL	CUIVRE	ZINC	GALLIUM	GERMANIUM	ARSENIC	SÉLÉNIUM
	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60
	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te
1	RUTHÉNIUM	RHODIUM	PALLADIUM	ARGENT	CADMIUM	INDIUM	ETAIN	ANTIMOINE	TELLURE
	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98	84 (209)
	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po
	OSMIUM	IRIDIUM	PLATINE	OR	MERCURE	THALLIUM	PLOMB	BISMUTH	POLONIUM

1. L'élément Thallium.

- 1.1. Le thallium se trouve, dans la classification périodique, à la sixième ligne et la treizième colonne. Donner la composition de son nuage électronique.
- 1.2. Donner la composition des **noyaux** du thallium 201, du thallium 203, du thallium 206.
- 1.3. Le thallium 204 est radioactif alors que le thallium 203 et le thallium 205 ne le sont pas ; proposer une explication.
- 1.4. Le thallium 203 est stable, alors que le thallium 200 et le thallium 206 sont radioactifs.

Quels types de particules ces deux nucléides sont-ils susceptibles d'émettre ? Justifier en exploitant la carte des nucléides fournie.

2. Formation du thallium 201.

- 2.1. Le thallium 203 est soumis à un flux de protons; il se transmute alors en plomb 201; donner l'équation de cette transmutation; préciser le noms de toutes les particules émises au cours de cette transformation.
- 2.2. Le plomb 201 est un émetteur β^+ . Donner le nom et l'équation de cette transformation.

3. Radioactivité du thallium 201.

Le thallium 201 se transforme en mercure 201 par capture électronique; sa période (demi-vie) vaut T = 73 heures.

Les émissions principales sont : $\gamma à 135 \ keV \ et 167 \ keV$

X à 69 keV, 71 keV et 80 keV

- 3.1. Expliquer ce qu'est une capture électronique; donner l'équation 384 correspondante.
- 3.2. Montrer que l'énergie disponible de cette transformation est proportionnelle à la différence des masses atomiques du thallium et du mercure ; calculer cette énergie.

3.3. Les premiers niveaux des états excités du noyau du mercure 201 sont donnés dans le diagramme d'énergie ci-contre (les énergies sont en keV).

À partir de ce diagramme, expliquer la formation des deux émissions γ évoquées plus haut.

32,1

3.4. Donner le schéma de désintégration du thallium 201

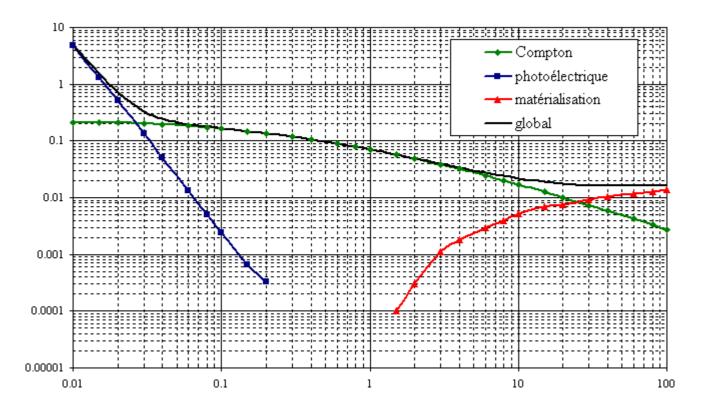
Quelques valeurs des niveaux d'énergies internes de l'atome de mercure sont données dans le tableau ci-dessous.

niveau	K (1s)	$L_{I}(2s)$	$L_{II}(2p)$	L_{III} (2p)	$M_I(3s)$
Énergie (keV)	-83,1	-14,8	-14,2	-12,3	-3,6

- 3.5. Calculer les énergies des raies $k_{\alpha 2}$, $k_{\alpha 3}$, et $k_{\beta 1}$; à partir de ces valeurs, expliquer la formation des rayons X émis au cours de la désintégration du thallium 201.
- 3.6. On observe également l'émission d'électrons "Auger" KLL.

Expliquer pourquoi la présence de ce type d'électrons accompagne la formation des rayons X; donner la signification du groupement de lettres KLL.

L'énergie cinétique des électrons Auger KLL vaut environ 55 keV; interpréter ce résultat à l'aide des données de la question 3.5.


4. Propagation des rayonnements dans la matière.

Le rayonnement émis par le thallium 201 est constitué à 70% de photons X de 71 keV. Le coefficient d'atténuation linéique de ces photons vaut 0,172 cm⁻¹. Le graphique ci dessous résume le comportement des photons dans l'eau.

- 4.1. Donner les noms et les unités des grandeurs portées sur les axes de ce graphique.
- 4.2. Déterminer quel type d'interaction ces photons subissent avec l'eau ; donner une description de ce type d'interaction..
- 4.3. On donne la masse volumique de l'eau $\rho = 1,0$ g.cm⁻³.

Retrouver graphiquement la valeur du coefficient d'atténuation linéique.

- 4.4. Calculer l'épaisseur de la couche de demi atténuation CDA pour ce type de photons dans l'eau.
- 4.5. Définir et calculer l'épaisseur de la couche de déci transmission CDT.

5. Activité d'un échantillon radioactif de thallium 201

Le thallium est livré en ampoule de 10,0 mL de solution de chlorure de thallium d'activité volumique 125 MBq/mL à la date de calibration. Les ampoules ont été calibrées pour le Lundi à 8h00.

5.1. La solution calibrée d'une ampoule est immédiatement dilué d'un facteur 10 (10 mL de l'ampoule dans un volume total de 100 mL) à la livraison.

Calculer l'activité volumique de la solution diluée obtenue.

5.2. La demi vie du thallium 201 est de 73 h; donner la signification de cette donnée.

Calculer la constante radioactive du Thallium 201.

5.3. On injecte, sous forme d'une solution de chlorure de Thallium une dose de 50 MBq à un adulte le Jeudi à 8h00.

Calculer l'activité volumique de la solution diluée (crée le Lundi) au moment de l'injection.

En déduire le volume de solution à injecter au patient.